Microorganisms for sustainable food production, environmental conservation and food security

School of Chemical Engineering University of Birmingham

Current Environmental Issues

Biodiversity loss

Climate change

Challenges of the current global food supply system

Food scarcity

Malnutrition

Environmental cost of food production

We need a better solution.

Green house gas emission (14.5%)

What we are doing at HeTa to address these issues

Microbial based food production

- Single cell proteins
- Algae based flour formulation for the baking industry

Bioremediation of heavy metals in Water/Wastewater

• Bio-recovery using E.coli

Food Safety

- Antimicrobial peptides for food shelf-life extension
- Industry collaboration for safer foods (biofilm detection and novel technologies for decontamination)

Food waste valourisation

 Extraction of useful industrial materials from food wastes (coffee, egg shell)

Algae based flour formulation for the baking industry

Rich source of Single –cell protein

Large scale fermentation for biomass and desirable metabolites

Algae flour

Research focus

- Algae strain selection and improvement
- Optimization of algae methods for improved yield and productivity.
- Fortification for higher nutritional value.
- New product formulation.

Bioremediation & Bio-recovery of heavy metals in Water/Wastewater

Chronic oil/metal pollution of rivers and water bodies

E. coli for heavy metal accumulation

Shake flask cultivation of *E. coli* with contaminated water

Portable water free of heavy metal

Antimicrobial peptides for food preservation

microencapsulation

Bacteriocins are antimicrobial peptides produced by bacteria that kill/inhibit other microorganisms

Lactic acid bacteria

Large scale fermentation

Active packaging

Extended shelf-life

Food Waste Valourisation

Conclusion

- In conclusion, HeTa is actively addressing critical environmental issues by implementing innovative solutions to food and agricultural processes.
- Our efforts directly target key concerns such as food waste, water pollution, climate change, and resource conservation.
- Through the production of bacteriocins from lactic acid bacteria, algae-based flour formulations, bioremediation of heavy metals and reducing/valorising food waste, we are taking tangible steps towards mitigating these environmental challenges.
- By prioritizing sustainable practices and optimizing resource usage, we aim to contribute to a more environmentally friendly and sustainable future, safeguarding ecosystems, reducing pollution, and promoting a healthier planet for generations to come.

THANK YOU

Additional Information:

https://www.birmingham.ac.uk/postgraduate/courses/taught /chemical-engineering/food-safety-hygiene.aspx

Email: <u>h.onyeaka@bham.ac.uk</u>